
www.manaraa.com

Building general purpose security services

on trusted computing

Chunhua Chen1∗ Chris J. Mitchell2 Shaohua Tang3†
1,3 School of Computer Science and Engineering

South China University of Technology
Guangzhou 510641, China

1 chen.chunhua@mail.scut.edu.cn, 3 csshtang@scut.edu.cn
2 Information Security Group

Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

c.mitchell@rhul.ac.uk

October 31, 2011

Abstract

The Generic Authentication Architecture (GAA) is a standardised
extension to the mobile telephony security infrastructures (including
the Universal Mobile Telecommunications System (UMTS) authenti-
cation infrastructure) that supports the provision of generic security
services to network applications. In this paper we propose one possi-
ble means for extending the widespread Trusted Computing security
infrastructure using a GAA-like framework. This enables an existing
security infrastructure to be used as the basis of a general-purpose
authenticated key establishment service in a simple and uniform way,
and also provides an opportunity for trusted computing aware third
parties to provide novel security services. We also discuss trust issues
and possible applications of GAA services.

Keywords: GAA, Trusted Computing, security service

1 Introduction

Almost any large scale network security system requires the establishment of
some kind of a security infrastructure. For example, if network authentica-

∗The author is a PhD student at the South China University of Technology. This
work was performed during a visit to the Information Security Group at Royal Holloway,
University of London, sponsored by the Chinese Scholarship Council and the Natural
Science Foundation of Guangdong Province, China (No. 9351064101000003).
†This author is the corresponding author.

1

www.manaraa.com

tion or authenticated key establishment is required, then the communicating
parties typically need access to a shared secret key or certificates for each
other’s public keys.

Setting up a new security infrastructure for a significant number of clients
is by no means a trivial task. For example, establishing a public key infras-
tructure (PKI) for a large number of users involves setting up a secure cer-
tification authority (CA), getting every user to securely generate a key pair,
securely registering every user and corresponding public key, and securely
generating and distributing public key certificates. In addition, the ongoing
management overhead is non-trivial, covering issues such as revocation and
key update.

At the same time, there are a number of existing security infrastructures,
in some cases with almost ubiquitous coverage. When deploying a new
network security protocol it is therefore tempting to try to exploit one of
these existing security infrastructures to avoid the need for the potentially
costly roll-out of a new infrastructure.

This is by no means a new idea (see, for example, [9]). However, previous
proposals have been application-specific. We instead propose the use of a
general framework which enables almost any pre-existing infrastructure to
be used as the basis for the provision of generic security services.

Of particular (and motivating) importance to our work is the Generic Au-
thentication Architecture (GAA) [1]. This architecture has been designed to
enable the Universal Mobile Telecommunications System (UMTS) authen-
tication infrastructure to be exploited for the provision of security services.
Building on previous work [4], we propose the adoption of the architecture
used by UMTS GAA to enable a wide range of other pre-existing infras-
tructures to be similarly exploited. One security infrastructure of particular
interest is the emerging Trusted Computing (TC) infrastructure, including
the Trusted Platform Modules (TPMs) present in a significant proportion
of all new Personal Computers (PCs).

We first generalise the concepts and procedures of GAA. We then con-
sider how this generalised notion can be supported by the trusted computing
security infrastructure. We refer to this combination as TC GAA. We also
discuss related trust issues and consider possible applications of GAA ser-
vices.

The remainder of this paper is organised as follows. In section 2 we in-
troduce our generalised version of GAA, and also briefly describe the stan-
dardised version building on the UMTS authentication infrastructure. In
section 3 we give details of TC GAA, building on a general Trusted Com-
puting security infrastructure. This is followed by a description of an in-
stantiation of TC GAA using TPMs in section 4. In section 5 we provide
an informal security analysis. We discuss related trust issues and possible
applications of GAA services in section 6. In section 7 we draw conclusions.

2

www.manaraa.com

2 Generic Authentication Architecture

We start by describing our generalised version of the GAA architecture, in-
troducing the main roles in the framework, the goals and rationales, and the
two main procedures. This generalised GAA architecture was first described
in [4]. We follow this by briefly describing the standardised implementations
of GAA as supported by the UMTS authentication infrastructure.

2.1 Overview of GAA

As shown in Figure 1, the following entities play a role in the GAA archi-
tecture.

• The Bootstrapping Server Function (BSF) server B acts as a Trusted
Third Party (TTP), and is assumed to have the means to access cre-
dentials belonging to a pre-existing security infrastructure. B uses the
pre-established credentials to provide authenticated key establishment
services to GAA-enabled user platforms and GAA-aware application
servers.

• A GAA-aware application server S is assumed to have the means
to establish a mutually authenticated and confidential secure channel
with B, and an arrangement to access the security services provided
by B . The means by which the secure channel between B and S
is established is outside the scope of the GAA framework. In the
GAA context, the functionality of a GAA-aware application server is
also referred to as the Network Application Function (NAF) server.
We use the terms application server and NAF server interchangeably
throughout.

• A GAA-enabled user platform P is assumed to be equipped with cre-
dentials belonging to the pre-existing security infrastructure. P pos-
sesses a BSF client CB, which uses the platform credentials to interact
with B to provide authenticated key establishment services. P also
possesses a NAF client CS that accesses services provided by S. CS in-
teracts with CB to obtain the cryptographic keys necessary to provide
client-server security services.

The user platform and the BSF server need to interact with the pre-
existing security infrastructure, whereas the application server does not (it
only needs to interact with the BSF server and the user platform). Also, the
user platform and the application server do not need to have a pre-existing
security relationship.

GAA provides a general purpose key establishment service for user plat-
forms and application servers. As described below, GAA uses a two-level

3

www.manaraa.com

Figure 1: GAA framework

key hierarchy, consisting of a master session key and server- and application-
specific session keys. The master session key is established using the pre-
existing security infrastructure, and is not used directly to secure GAA-
based applications. Instead it is used to generate the server/application-
specific session keys using a key diversification function. By choosing a
function with appropriate properties, it can be arranged that knowledge
of a server/application specific session key will not reveal any information
about the master session key or any other server/application-specific keys.

2.2 GAA procedures

As we now describe, GAA incorporates two main procedures: GAA boot-
strapping and Use of bootstrapped keys.

GAA bootstrapping uses the pre-existing security infrastructure to set
up a shared master key MK between P and B . Also established is a Boot-
strapping Transaction Identifier B-TID for MK and the lifetime of this key.
B-TID must consist of a (statistically) unique value which can identify an
instance of GAA bootstrapping as well as B ’s network domain name.

The Use of bootstrapped keys procedure establishes a server/application-
specific session key SK between P and S, using the master key MK shared
by P and B . The procedure operates in the following way. P first derives a
session key SK as:

SK = KDF(MK ,NAF -Id , other values)

where KDF is a one-way key diversification function, and NAF-Id is an

4

www.manaraa.com

application-specific value consisting of the Fully Qualified Domain Name
(FQDN) of S and the identifier of the underlying application protocol. Other
values may be included in the key derivation computation depending on
the nature of the underlying security infrastructure. P (strictly, CS) then
starts the application protocol by sending a request containing B-TID to
S . S submits the received B-TID and its own identifier NAF-Id to B to
request the session key SK . Note that B-TID contains B ’s network domain
name, so S knows where to send the request. As stated above, we require
that S and B have the means to establish a mutually authenticated and
confidential secure channel, and hence B can verify S against its FQDN. If
S is authorised, B derives SK from the MK identified by B-TID, and sends
SK, its lifetime, and other relevant information to S via the secure channel.
P and S now share SK, which they can use to secure application-specific
messages.

Note that key separation is enforced by including NAF-Id as an input
to the key diversification function. Other values used in the computation
of SK could include identifiers for the GAA bootstrapping instance and the
user platform.

2.3 UMTS GAA

The standardised versions of GAA [1] build on the mobile authentication
infrastructures (including those for UMTS and GSM). In the UMTS version
of GAA, a UMTS network operator provides the BSF with the key MK, and
the user platform is a UMTS mobile. The UMTS authentication and key
agreement protocol is used to establish the key MK, which is independently
generated by the user platform and the network operator as part of GAA
bootstrapping. The identifier B-TID is a combination of the RAND used in
UMTS authentication and the BSF’s identifier.

3 TC GAA

In this section we propose a possible means of using the Trusted Computing
security infrastructure to support a GAA-like framework, which we refer
to as TC GAA. We start by giving a high-level description of the Trusted
Computing security infrastructure, without referring to any specific trusted
computing technology. We then specify the operation of TC GAA as built
on this general infrastructure. A specific instantiation of TC GAA using the
features of a TCG-compliant TPM is described in the next section.

Note that a very brief sketch of a possible TC GAA implementation has
previously been described [4]. By contrast, in this paper we give detailed
descriptions of instantiations of TC GAA, and provide an analysis of its
security properties.

5

www.manaraa.com

3.1 Trusted Computing Security Infrastructure

A fundamental notion in Trusted Computing (TC) is the Trusted Platform
(TP). According to Balacheff et al. [2]: “A trusted platform (TP) is defined
as a computing platform that has a trusted component, which is used to
create a foundation of trust for software processes”. We refer to such a
trusted component as a Trusted Module (TM). A TM encompasses all the
platform functionalities and data areas within a TP that must be trusted, if
the platform is to be trusted. Gallery [5] identifies a minimum set of trusted
TM features. In practice, a trusted computing technology might make use
of a range of mechanisms to meet these requirements.

Listed below (following Gallery [5]) are the features that a TM must
possess in order to support our general instantiation of TC GAA.

• The TM is a self-contained processing module containing specialist ca-
pabilities, including random number generation, asymmetric key gen-
eration, digital signing, encryption/decryption and hashing.

• The TM contains shielded locations, data stored in which (e.g. TM-
generated keys) is protected against interference or snooping and is
only accessible to the specified capabilities.

• The TM is equipped with a unique asymmetric encryption key pair at
the time of (or soon after) manufacture. The private decryption key
is stored securely in the TM-shielded location and is never exported
from the TM. A certificate for the associated public key, containing a
general description of the TM and its security properties, is generated
by a CA.

• The TM is capable of generating asymmetric signature key pairs. The
TM can, by some means, obtain certificates for the public keys of such
key pairs from a CA. The private signature keys are securely held by
the TM.

• The TM is capable of generating asymmetric encryption key pairs.
The TM can generate certificates for the public keys of these key pairs
using the signature keys described above. The private decryption keys
are securely held by the TM.

Note that information said to be held securely by the TM may actually
be stored externally to the TM, encrypted using a key known only to the
TM.

A TM will typically possess a range of other security-related features, not
directly used by TC GAA. Some of these features could be used to enhance
the trustworthiness of the TC GAA application software running on the
TP. In particular, platform integrity measurement, storage and reporting

6

www.manaraa.com

services could be used to provide assurance regarding the software state of
the platform.

Trusted Computing makes use of public key cryptography, and realis-
ing its full potential requires a supporting PKI. We use the term Trusted
Computing security infrastructure to refer to the set of deployed TMs, the
associated keys, and the supporting PKIs. Trusted computing technology
can be implemented in a variety of computing platforms, including PCs (e.g.
laptops) and mobile devices (e.g. mobile phones). In this paper we focus on
PC-based TPs.

3.2 The TC GAA Architecture

As shown in Figure 2, the following Trusted Computing specific entities play
a role in TC GAA.

• The supporting PKIs. We assume that all relevant certificates are
obtainable by the entities involved.

• The GAA-enabled user platform P is a Trusted Platform containing a
Trusted Module M, as defined in section 3.1. We assume that M has
already generated a signature key pair, and has obtained a certificate
CertM for the public key of this key pair from a CA, where CertM binds
an identity of M (IdM) to the public key (where M may have many
such identities). The private signing key is available only to M (we
assume it is stored externally to M, encrypted using a key known only
to M). The BSF client, CB, implements the authentication and key
establishment protocol which forms part of the TC GAA bootstrapping
procedure specified below.

• The BSF server B has a signature key pair and a certificate CertB
for the public key of this key pair. This key pair is used for entity
authentication.

In practice, M might be equipped with multiple certified signature key
pairs. We assume that the certified signature key pair specified above is
used for TC GAA bootstrapping, and is used for multiple instances of the
protocol. Typically this involves M, in conjunction with CB, obtaining such
a key pair via a separate configuration procedure prior to the TC GAA
bootstrapping procedure. Thus CB knows which signature key pair is to be
used in TC GAA bootstrapping.

3.3 The TC GAA procedures

In this section we specify the TC GAA bootstrapping and the TC GAA Use
of bootstrapped keys procedures, which use the general Trusted Comput-
ing security infrastructure defined in section 3.1. The authentication and

7

www.manaraa.com

Figure 2: TC GAA framework

key establishment protocol which forms part of TC GAA bootstrapping is
motivated by the protocol defined in Gallery and Tomlinson [6]. Table 1
summarises the notation used in the remainder of this paper.

8

www.manaraa.com

P a GAA-enabled trusted platform
M a trusted module embedded in P
I integrity metrics that reflect a certain state of P
B a BSF server
CB a BSF client residing in P
S a GAA-aware application server
CA a Certification Authority trusted by all entities
CertX a certificate for entity X ’s signature public key
IdX an identity of entity X
RX a random number issued by entity X
Mpub a TM-generated temporary public encryption key
Mpri a TM-generated temporary private decryption key

corresponding to Mpub

EMpub
(Z) the result of the asymmetric encryption of data Z

using the public key Mpub

H a one-way hash function
SX(Z) the digital signature of data Z computed using

entity X ’s private signature transformation
X||Y the concatenation of data items X and Y in that order

Table 1: Notation

The TC GAA bootstrapping protocol involves the following sequence of
steps, where X → Y : Z is used to indicate that message Z is sent by entity
X to entity Y .

1. CB → B : request to bootstrap a master session key MK .

2. B : generates and caches a random value RB.

3. B → CB: RB.

4. CB → M : request to generate a random number.

5. M → CB: RM .

6. CB → M : request to load M ’s private signature key.
(Note that M ’s private signing key must be loaded into M before use
because it is stored externally to M .)

7. M : loads M ’s private signing key.

8. M → CB: the handle of the loaded private signing key.

9

www.manaraa.com

9. CB → M : request generation of an asymmetric encryption key pair
(Mpub, Mpri), and association of Mpri with a specified protected envi-
ronment state of P .

10. M : generates (Mpub, Mpri), where Mpri is bound to the specified pro-
tected environment state.

11. M → CB: (Mpub, Mpri), where Mpri is encrypted using a key available
only to M .

12. CB → M : request to generate a certificate for Mpub in association with
RM , RB, IdB and I .
(IdB is B ’s network domain name. The integrity metrics I reflect both
the state of the protected environment when the key pair (Mpub, Mpri)
was generated and the state required for use of the newly generated
Mpri.)

13. M : signs a data string including Mpub, RM , RB, IdB and I using its
private signing key to obtain: SM (RM ||RB||IdB||Mpub||I).

14. M → CB: Mpub||I||SM (RM ||RB||IdB||Mpub||I).

15. CB → B : CertM ||IdM ||RM ||RB||IdB||Mpub||I||SM (RM ||RB||IdB||Mpub||I).

16. B : retrieves CertM and verifies it.
B : verifies SM (RM ||RB||IdB||Mpub||I).
B : verifies RB to ensure that the message is fresh.
B : verifies IdB to ensure that the message is intended for it.
B : verifies that I indicates that CB is executing as expected, i.e. that
it has not been tampered with.

17. Assuming that the signature from M verifies correctly, the value of
RB is fresh, the value of IdB is as expected, and the integrity metrics
I are acceptable, then
B : generates a master session key MK, sets the lifetime of MK accord-
ing to B ’s local policies, and generates an identifier B-TID for MK
consisting of RM , RB and B ’s network domain name.

18. B : caches B-TID, MK, lifetime of MK, RM , RB, and IdM .

19. B → CB: CertB||B-TID||lifetime of MK ||RB||RM ||IdM ||EMpub
(MK)||

SB(RB||RM ||IdM ||EMpub
(MK)).

20. CB: retrieves CertB and verifies it.
CB: verifies SB(RB||RM ||IdM ||EMpub

(MK))
CB: verifies RM to ensure that the message is fresh.
CB: verifies IdM to ensure that the message is intended for it.

10

www.manaraa.com

21. Assuming that the signature from B verifies correctly, the value of RM

is fresh, and the value of IdM is as expected, then:
CB → M : request to load the encrypted key Mpri.

22. M : loads the encrypted key Mpri.

23. M → CB: the handle of the loaded Mpri.

24. CB → M : request to decrypt EMpub
(MK) using Mpri.

25. M : decrypts EMpub
(MK) and deletes Mpri.

26. M → CB: MK .

27. CB: caches B-TID, MK, lifetime of MK, RM , RB, and IdM .

28. CB: deletes the part-encrypted key pair (Mpub, Mpri).

After successful execution of the above protocol, B and CB share a new
set of bootstrapped credentials, including random challenges RM and RB,
M ’s identity IdM , and a master session key MK together with its identifier
B-TID and lifetime. We assume that these bootstrapped credentials are
held securely by CB by some means (e.g. encrypted and integrity protected
by M).

Verifying the trustworthiness of P ’s software environment is not nec-
essary in order to complete authenticated key establishment, which is, of
course, the main goal of the TC GAA bootstrapping protocol. If B does
not need to verify the trustworthiness of P ’s software environment at the
time of protocol execution, a fresh encryption key pair (Mpub, Mpri) does
not need to be generated for every instance of the bootstrap procedure. In-
stead M could generate a encryption key pair (without associating it with
a specified protected environment state) in advance of the protocol, and use
it multiple times. When bootstrapping, M would load the public key of this
encryption key pair and use its private signing key to generate a certificate
for this public key that includes the nonces for the current session (i.e. RM

and RB).
In the TC GAA use of bootstrapped keys procedure, CS and S follow the

procedure defined in section 2.2 to establish a server/application-specific
session key SK . The session key SK is derived as follows:

SK = KDF(MK ,RM ,RB , IdM ,NAF -Id).

4 Building TC GAA using the TCG Specifications

The generic version of TC GAA described above could be implemented using
a range of technologies, including a platform constructed in accordance with

11

www.manaraa.com

the specifications of the Trusted Computing Group (TCG). In this section
we specify an instantiation using TPMs as defined in the version 2.1 of the
Trusted Computing Group (TCG) specifications [11, 12, 13].

4.1 The TCG Specifications

A TCG-compliant TPM meets the requirements for the TM identified in
section 3.1. Gallery [5] describes the TPM features. In this section we map
the necessary features for a TM identified section 3.1 onto a TPM.

• The TPM is a secure module which contains protected capabilities and
shielded locations. The protected capabilities include all the function-
alities required for TC GAA, as well as other capabilities such as a
SHA-1 engine, a HMAC engine, and a monotonic counter. When im-
plemented as a hardware chip, the TPM must be inextricably bound
to its host platform.

• The TPM is equipped with a unique Endorsement Key (EK) pair,
an RSA encryption key pair, at the time of (or soon after) manufac-
ture. The private decryption key is stored in a TPM-shielded location
and is never exported from the TPM. An endorsement credential (a
certificate for the public key of this EK key pair) is signed by a CA
(as provided by a Trusted Platform Module Entity (TPME)). The en-
dorsement credential, in conjunction with its associated conformance
credential and platform credential, describes the security properties of
the TPM and its host platform.

• The TPM is capable of generating Attestation Identity Keys (AIKs),
which are RSA signature key pairs. A certificate CertTPM for the
public key of an AIK key pair can be obtained in two ways: using a
privacy CA, and using Direct Anonymous Attestation [3]. The asso-
ciated private key is securely held by the TPM. The TPM can use an
AIK to certify other TPM-generated keys.

• The TPM is capable of generating asymmetric encryption key pairs on
demand, which can be migratable or non-migratable. For the purposes
of TC GAA, we assume that non-migratable keys are used. The private
key of a TPM-generated encryption key pair is securely held by the
TPM. A certificate for the encryption public key can be generated by
the TPM using an AIK.

• Integrity measurement, storage and reporting are supported. Mea-
suring events on a platform is a two-stage process that begins with
appending a hash of the event (e.g. the launch of an application) be-
ing measured to the content of one of a number of internal registers
(known as Platform Configuration Registers (PCRs)). The hash of the

12

www.manaraa.com

resulting string is written back to the PCR concerned. The other part
of the process involves recording details of the event in the Stored
Measurement Log (SML) file. The values of the PCRs identify the
current platform state. When a challenger wishes to verify a trusted
platform’s integrity, it requests (a portion) of the platform’s SML,
together with a TPM-generated signature (generated using an AIK)
on a subset of PCR values that describe the desired portion of the
platform’s operating state.

4.2 TC GAA Procedures Using a TPM

A trusted platform which contains a TCG-compliant TPM M can play the
role of the GAA-enabled user platform P . M must possess an AIK pair,
which plays the role of the signature key pair used in the TC GAA boot-
strapping protocol. A certificate CertM is required to bind an identity of M
(IdM) to the public key of the AIK. We suppose that the private signing
key is stored externally to M, encrypted using a key available only to M .

We now describe a means of using the version 1.2 TCG TPM data
structures [12] and command set [13] to implement the TC GAA bootstrap-
ping protocol defined in section 3.3. The data structures involved include
TPM NONCE, TPM KEY HANDLE, TPM KEY and TPM CERTIFY INFO.
The TPM commands involved include TPM-CreateWrapKey, TPM GetRandom,
TPM LoadKey, TPM-CertifyKey and TPM-UnBind.

During protocol execution, CB calls the TPM GetRandom command to
request M to generate a random value RM (step 4). M returns RM in a
TPM NONCE data structure (step 5). CB then calls the TPM LoadKey
command, requesting M to load a private signing key (step 6). M re-
turns the handle of the loaded key in a TPM KEY HANDLE data structure
(step 8). CB next invokes the TPM-CreateWrapKey command, requesting
M to generate an encryption key pair (Mpub, Mpri) (step 9). The TPM-
CreateWrapKey command arguments include an unwrapped TPM KEY
data structure and a parent wrapping key. The unwrapped TPM KEY
specifies information about the key pair to be created, such as the key size
(e.g. 1024 bits), the key usage (i.e. TPM KEY BIND), and the key flag (i.e.
non-migratable); it also specifies the platform state at the time the key pair
is created (referred to as digestAtCreation) and the platform state required
for use of the generated private key (referred to as digestAtRelease).

M returns a wrapped TPM KEY data structure (step 11). The wrapped
TPM KEY contains Mpub, the encrypted Mpri (encrypted using the parent
wrapping key), a value indicating that the key pair is non-migratable, and a
value indicating that the key pair can only be used for TPM-Bind and TPM-
UnBind operations. The wrapped TPM KEY also identifies the PCRs whose
values are bound to Mpri, the PCR digests at the time of key pair creation,
and the PCR digests required for Mpri use. The PCR data included in the

13

www.manaraa.com

wrapped TPM KEY maps to the integrity metrics I in the generic protocol.
M is then requested to sign Mpub and I in conjunction with exter-

nal data RM , RB and IdB (step 12). This involves a call to the TPM-
CertifyKey command, which takes arguments that include the public key
of the TPM-generated key pair to be certified (i.e. a wrapped TPM KEY)
and a private signature key (i.e. M ’s private signing key). A hash of RM ,
RB and IdB is also input as 160 bits of externally supplied data. In re-
sponse, M returns a TPM CERTIFY INFO data structure and a signa-
ture on TPM CERTIFY INFO (step 14). The string TPM CERTIFY INFO
contains (a description of) the public key that has been certified, the 160
bits of externally supplied data, a hash of the certified public key, and the
PCR data in use.

B needs to encrypt MK so that it can be decrypted by M (step 19).
B calls the Tspi Data Bind command ([10], p. 363), which takes a data
block to be encrypted (i.e. MK) and a public encryption key (i.e. Mpub) as
arguments and returns an encrypted MK (i.e. EMpub

(MK)).
Assuming that the response from B is correct, CB requests M to load the

encrypted key Mpri (step 21), and then calls the TPM-UnBind command to
decrypt EMpub

(MK) (step 24). M outputs the master key MK to CB (step
26).

We now summarise the TC GAA bootstrapping protocol using the version
1.2 TCG TPM commands and data structures.

1. CB → B : request to bootstrap a master session key MK .

2. B : generates and caches a random value RB.

3. B → CB: RB.

4. CB → M : TPM GetRandom.

5. M → CB: TPM NONCE (containing RM).

6. CB → M : TPM LoadKey (M ’s private signing key).

7. M : loads M ’s private signing key.

8. M → CB: TPM HANDLE (containing the handle of M ’s private sign-
ing key).

9. CB → M : TPM-CreateWrapKey (an unwrapped TPM KEY, the han-
dle of the loaded parent wrapping key).

10. M : generates (Mpub, Mpri), where Mpri is bound to a specified pro-
tected environment state.

11. M → CB: a wrapped TPM KEY.

14

www.manaraa.com

12. CB →M : TPM-CertifyKey (the wrapped TPM KEY, H(RM ||RB||IdB)).
(Note that the PCR data included in TPM KEY maps to the integrity
metrics I).

13. M : generates TPM CERTIFY INFO data structure, and signs it.

14. M → CB: TPM CERTIFY INFO||SM (H(RM ||RB||IdB)||H(Mpub)||I).
(We represent the signature on TPM CERTIFY INFO generated by
M in simplified form as SM (H(RM ||RB||IdB)||H(Mpub)||I).)

15. CB → B : CertM ||IdM ||RM ||RB||IdB||TPM Key||SMLData
TPM Certify Info|| SM (H(RM ||RB||IdB)||H(Mpub)||I).

16. B : verifies CertM , the received signature, RB, IdB and I, as described
in section 3.3.
(B uses the SML data received in step 15 to recompute I for verifica-
tion. If B does not want to verify the trustworthiness of P ’s software
environment, the SML data does not need to be sent.)

17. Assuming that the signature from M verifies correctly, the values of
RB and IdB are as expected, and the integrity metrics I are acceptable,
then:
B : Generates a symmetric session key MK, sets the lifetime of MK
according to B ’s local policies, and generates an identifier B-TID for
MK consisting of RTPM, RBSF and B ’s network domain name.

18. B : caches B-TID, MK, lifetime of MK, RM , RB and IdM .

19. B → CB: CertB||B-TID||lifetime of MK ||RB||RM ||IdM ||EMpub
(MK)||

SB(RB||RM ||IdM ||EMpub
(MK)).

20. CB: verifies CertB, the received signature, RM and IdM , as described
in section 3.3.

21. Assuming that the signature from B verifies correctly, the value of RM

is fresh, and the value of IdM is as expected, then:
CB → M : TPM LoadKey (the encrypted key Mpri).

22. M : loads the encrypted key Mpri.

23. M → CB: KEY HANDLE (containing the handle of Mpri).

24. CB → M : TPM-UnBind (EMpub
(MK), the handle of the loaded key

Mpri).

25. M : decrypts EMpub
(MK) and deletes Mpri.

26. M → CB: MK .

15

www.manaraa.com

27. CB: caches B-TID, MK, lifetime of MK, RM , RB and Idm.

28. CB: deletes the part-encrypted key pair (Mpub, Mpri).

5 Informal Security Analysis

We now provide an informal security analysis of the authentication and
key establishment protocol used by the TC GAA bootstrapping protocol in
section 3.3 (including steps 3, 15 and 19). We consider a threat model in
which an attacker A is able to observe and make arbitrary modifications
to messages exchanged between B and P, including replaying and blocking
messages as well as inserting completely spurious messages. This allows a
trivial denial of service attack which cannot be prevented. Note that A is
not allowed to compromise the implementations of B and P ; such attacks
on system integrity cannot be prevent by the key establishment process, and
are thus not addressed by the schemes we propose.

1. Entity authentication. The protocol provides mutual authentication
between B and M using digital signature techniques. B can verify the
identity of the M (IdM); that is, the signature of M on RB and IdB

allows B to authenticate M (step 15). Similarly, M can authenticate
B by verifying the signature of B on RM and IdM (step 19). Step
3, 15 and 19 of the protocol conform to the three pass unilateral au-
thentication protocol mechanism described in clause 5.2.2 of ISO/IEC
9798-3:1998 [8], in which the values RB and RM , generated by B and
M respectively, serve as the nonces.

2. Confidentiality of the master session key MK . The signature of M on
Mpub allows B to verify that M generated the key pair (Mpub, Mpri)
(step 15). MK is generated by B, and is encrypted using the TM-
generated temporary public key Mpub before being sent to M (step
19). The corresponding private key Mpri is securely held by M, and
is only useable when the protected platform is in a particular trusted
state. Hence, A cannot access to MK under the assumed threat model.

3. Origin authentication. RB, RM , IdB, IdM , Mpub and EMpub
(MK)

are signed by B and M (steps 15 and 19), and thus both parties can
verify the origin of the received message. The signatures also provide
integrity protection.

4. Freshness. RB, generated by B, is included in the signed bundle sent
to B in step 15; similarly RM , generated by M, is included in the
signed bundle sent to CB in step 19. Hence, A cannot later replay the
messages to either entity.

16

www.manaraa.com

5. Key confirmation. Upon receipt of the message in step 19, CB can
be sure that B has generated the MK within the current session by
verifying the signature of B on RM , IdM and EMpub

(MK). However,
CB does not confirm the receipt of MK to B . Note that A can block all
the messages exchanged, and network errors might occur, and hence
only CB can be sure that it shares a fresh MK with B (until successful
use of the key by P).

6. Key control. The protocol is an authentication and key transport
protocol. B generates the master session key MK, and hence B has
key control.

6 Using the GAA Framework

We now discuss trust issues and possible applications of the GAA services.

6.1 Trust issues

The nature of the GAA architecture means that the end users implicitly
trust the provider of the BSF service. This means that the entity providing
this service needs to be selected with care, and it may also mean that the
service may not be appropriate for every application. Nevertheless, in the
non-electronic world, trusted third parties are relied on for a huge range
of services, some very sensitive, and hence this does not appear to be a
fundamental obstacle. In addition, if security sensitivity justifies the addi-
tional cost, multiple BSF services could be accessed simultaneously, thereby
distributing the necessary trust.

6.2 Applications

A wide range of applications for UMTS GAA have been explored — see, for
example, Holtmanns et al. [7]. Any other scheme providing a GAA service
such as the system described here can support very similar applications.

In ongoing work we are examining ways in which a range of variants of the
GAA service can be used to support one time passwords [4]. The schemes
enable an GAA enabled user platform (e.g. a mobile phone or a trusted
commodity computer) to act as a one-time password generator. If a user
registers with an application server (establishing a username and password,
a human-memorable weak secret), one-time passwords can be generated as a
function of on-demand GAA bootstrapped application-specific keys and the
shared password. A prototype of one of the schemes (Ubipass1, which makes
use of UMTS GAA services) has been developed in collaboration with the
Nokia Research Center in Helsinki. We are currently studying its usability

1http://ubipass.research.isg.rhul.ac.uk/

17

www.manaraa.com

and performance. The same OTP generation protocol (the OTP agreement
protocol in Ubipass) could also be built using the TC GAA service. Ubipass
provides an Internet one-time password solution which could be deployed
to enable the provision of ubiquitous one-time password services for a large
class of users.

7 Conclusions

GAA is a framework that enables pre-existing security infrastructures to be
used to provide general purpose security services, such as key establishment.
We have shown how GAA services can be built on the Trusted Computing
security infrastructure, complementing the previously standardised GAA
schemes built on the mobile phone infrastructures. The solution described
in section 3.3 has been designed to apply to a range of trusted computing
technologies. We have also provided an instantiation of this solution as
supported by the TCG specifications.

TC GAA provides a way of exploiting the now very widespread trusted
computing infrastructure (as supported by PC-based trusted platforms)
for the provision of fundamentally important generic security services. Of
course, application-specific security protocols building on the infrastructure
can be devised independently of any generic service and, indeed, there is a
large and growing literature on such schemes. However, the definition of a
standard GAA-based security service enables the trusted computing infras-
tructure to be exploited in a simple and uniform way, and it also provides
an opportunity for trusted computing aware third parties to provide novel
security services. This may help with providing the business case necessary
for the emergence of the wide range of third party security services necessary
to fully realise the goals of trusted computing.

References

[1] 3rd Generation Partnership Project (3GPP). Technical Specification
Group Services and Systems Aspects, Generic Authentication Architec-
ture (GAA), Generic Bootstrapping Architecture, Technical Specifica-
tion TS 33.220, Version 9.2.0, 2009.

[2] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and G. Proundler.
Trusted Computing Platforms: TCPA Technology in Context. Pren-
tice Hall, 2003.

[3] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anony-
mous attestation. In Vijayalakshmi Atluri, Birgit Pfitzmann, and
Patrick Drew McDaniel, editors, The 11th ACM Conference on Com-

18

www.manaraa.com

puter and Communications Security, CCS 2004, Washingtion, DC,
USA, October 25-29, 2004, Proceedings, pages 132–145. ACM, 2004.

[4] Chen Chunhua, Chris Mitchell, and Tang Shaohua. Ubiquitous One-
Time Password Service Using the Generic Authentication Architecture.
Mobile Networks and Applications, to appear.

[5] Eimear Gallery. An overview of trusted computing technology. In
Chris J. Mitchell, editor, Trusted Computing, pages 29–114. IEE, 2005.

[6] Eimear Gallery and Allan Tomlinson. Secure Delivery of Conditional
Access Applications to Mobile Receivers. In Chris J. Mitchell, editor,
Trusted Computing, pages 195–237. IEE, 2005.

[7] Silke Holtmanns, Valtteri Niemi, Philip Ginzboorg, Pekka Laitinen, and
N. Asokan. Cellular Authentication for Mobile and Internet Services.
John Wiley and Sons, 2008.

[8] International Organization for Standardization, Genève, Switzerland.
ISO/IEC 9798-3:1998, Information technology—Security techniques—
Entity authentication—Part 3: Mechanisms using Digital Signature
Techniques, 1998.

[9] Andreas Pashalidis and Chris J. Mitchell. Single sign-on using trusted
platforms. In Colin Boyd and Wenbo Mao, editors, Information Secu-
rity, 6th International Conference, ISC 2003, Bristol, UK, October 1-3,
2003, Proceedings, volume 2851 of Lecture Notes in Computer Science,
pages 54–68. Springer, 2003.

[10] Trusted Computing Group. TCG Software Stack (TSS) Specification
Part 1: Commands and Structures, Version 1.2, 2007.

[11] Trusted Computing Group. TPM Main, Part 1 Design Principles, TCG
Specification, Version 1.2, Revision 103, 2007.

[12] Trusted Computing Group. TPM Main, Part 2 TPM Data Structures,
TCG Specification, Version 1.2, Revision 103, 2007.

[13] Trusted Computing Group. TPM Main, Part 3 Commands, TCG Spec-
ification, Version 1.2, Revision 103, 2007.

19

